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Continuous indentation tests using a 6.35 mm diameter steel ball were carried out on 
polycrystall ine aluminium (99.995%) at forces up to 942 N (96 kg) and a total 
displacement of 65#m. On loading the results were observed to fol low the classical. Hertz 
equation until the elastic l imit was reached at 4.6 + 0.2 N (0.47 kg), 1.02 -+ 0.05 #m. 'The 
unloading results after plastic indentation were found to f i t  the Hertz solution for an 
indenter in a spherical hole. Using the Hertz theory it was possible from the unloading 
results to determine the mean stress and strain under the ball, together with the 
indentation diameter, plastic strain, Meyer stress and ratio of elastic to total strain, 
enabling a stress-strain curve for hardness to be drawn. The elastic l imit of aluminium 
occurred at a stress of 4.7 +0.2 x 108 Pa (46 kg mm -~ ) and a strain of 1.27 + .05%. At  a 
total strain of 11.25% the stress was 11.7 + 0.2 • 108 Pa ( 115 kg mm -2 ). 

1. Introduction 
The continuous indentation test has been used by 
a number of researchers to study hardness. Bunshah 
and Armstrong [ 1 ] measured the hardness of brass 
from a continuous test and expressed their results 
in terms of the Meyer stress. Armstrong and 
Robinson [2, 3] observed the elastic and plastic 
deformation of KC1 and from their results formed 
a stress-strain curve (by the addition of elastic 
and plastic areas) which in the elastic region agreed 
with the Hertz solution for the mean stress under 
the indenter and in the plastic region approached 
the Meyer stress. Cousins et al. [4] successfully 
followed the elastic deformation of lignin, a com- 
ponent of wood, and were, from their results, able 
to form an elastic stress-strain curve and deter- 
mine the Young's modulus of lignin. In this paper 
we present results for the elastic and plastic defor- 
mation of aluminium obtained at higher sensitivity 
(~ +0.02pxn) than used previously and using the' 
Hertz theory we determine a stress-strain curve 

for hardness together with curves for the Meyer 
stress, indentation diameter and ratio of elastic to 
total strain. These stress-strain curves differ from 
our previous work in that in the plastic region they 
were determined solely from the elastic unloading 
curves rather than by the less rigorous addition of 
elastic and plastic areas. 

2. Test procedure 
The test end of the 99.995% aluminium specimen 
(grain size < 1 #m) was polished to a mirror finish 
with Buehler m/cropolish C (<l/~m) alpha 
alumina. The opposite end of the 20 mm diameter 
by 30ram cylindrical specimen was ground flat 
with 400 paper. The steel ball (6.35 mm diameter) 
assembly was attached directly to the 100 to 5000 
N load cell of a 250 kN Instron testing machine 
(model TT-KM). The specimen was placed on a I0 
cmx  10cm x 3cm thick flat steel plate and the 
specimen plus ball displacement was measured 
using a Hewlen Packard 24DCDT-050 displace- 
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ment transducer attached directly to the ball 
assembly with its core extension resting on the 
steel plate. The force displacement curves were 
recorded on a fast response ( <  1 sec for f s d ) X - Y  
recorder with the force measured from the load 
cell. The amplfication of  the load and displace- 
ment  was such that on the X - Y  recorder 1 cm 
could represent a load ranging from 0.05 to 50 N 
and a displacement ranging from 0.13 to 2.6gin. 
With this configuration there was no need to take 
the machine deflection or hysteresis into account, 
although before it was possible to get the required 
stability to begin the test it was necessary to run 
the Instron, load cell amplifier, transducer and re- 
corder for 8 h  with the test room completely 
closed. 

3 .  R e s u l t s  
I f  the elastic displacement, h(e), o f  the specimen 
plus ball followed the elastic solution, then from 
Hertz [5] (see also [6])  

h(e) = [(1 -- v(1)2)/E(1) + (1 -- v(2)2)/E(2)] 2/3 

x [9(D(1)-'--D(2)-')/811/3F 2/a (1) 
where v(/) is Poisson's ratio E(/) is Young's modu- 
lus, "1"  refers to the ball and "2"  to the specimen, 
D(1) is the ball diameter and D(2) the diameter of  

�9 curvature of  the indented hole and F is the applied 
, force. The results for the initial loading at a cross 
,head speed of  10t~mmin -1 are shown on a F 2/3 
versus h(t) plot in Fig. 1, h(t) being the total dis- 
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Figure I (Foree)2J3-displacement curve for the initial 
loading-unloading at 10 t~m min- 1. The dashed line is 
from the Hertz solution (Equation 1) with D(1) = 6.35 
mm and D(2) = -0 while the straight line for unloading is 
for D(2)= 42.4 mm. On unloading h(e)= 1.66 ~m and 
h(p) = 0.22 gm. 
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placement h(e) + h(p) where h(p) is the plastic dis- 
placement. The dashed line is given by Equation 1 
with D(2) = oo and E(1) = 2.11 x 1011 Pa, v(1) = 
0.28, E ( 2 ) = 7 . 0 3 x  101~ and v ( 2 ) = 0 . 3 4 ,  
values for steel and aluminium. Except for the first 
point at 0.25 N (25 g) the results fit this straight 
line until the elastic limit is reached at a load of  
4.6-+ 0.2 N (0.47kg) and displacement of  1.02 + 
0.05/1m. On unloading from 10.3N a n  F 2/3 

straight line is followed, though in this case it is 
steeper than the initial loading curve and gave a 
plastic deformation h(p) = 0.22/~m. The force was 
then increased in a series of  loadings and unloadings 
to a maximum of 94 N before the results shown in 
Fig. 2 to a maximum of  942 N were obtained. The 
reloading curves followed the unloading results up 
to the maximum previous force, and the unloading 
curves followed the elastic behaviour, but with a 
steeper slope than for D(2) = o% consistent with a 
decrease in D(2) with increasing plastic defor- 
mation. 

These results are in agreement with the sugges- 
tion of Tabor [7] that  the indented hole can, on 
unloading, be treated as the cap of  a sphere of  
radius of  curvature greater than that of  the in- 
denter. By rearranging Equation 1 

0 (2 )  -1 = D(1 ) - '  --  8 {(1 -- v(1)2)le(1) 

+ (1 - v(Z)2)/E(2)}-2h(e)3/9F 2 

(2) 
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Figure 2 (Force) 2~3 -displacement curve for a number of 
loadings and unloadings at 10t~m rain -1 . The dashed line 
is for D(2)= ~0 while the straight lines for unloading 
range from D(2) = 10.0 to 8.77 min. 
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Figure 3 D(1)/D(2) and e(e)/e(t) versus e(t) 
curves calculated from the unloading results; 
e(e)/e(t) e, D(1)/D(2) o. 

so that from the unloading results it is possible to 
determine D(2). For example,  on unloading from 
force of  t 0 . 3 N  in Fig. 1, h ( e ) =  1.66/.tm so that 
D(2) = 4 2 . 4 m m  while from the maximum force 
for this test of  942N in Fig. 2, h(e) = 23 .14gm 
and D(2) = 8.77 ram. The variation of  D(1)/D(2) 
with total strain is presented in Fig. 3 and has two 
approximately linear regions, the first with a rapid 
rise at the start o f  plastic deformation and the 
second, a slow increase when most of  the strain is 
plastic. 

A check of  D(2) carl be made by measuring the 
diameter, d(2), of  the indented hole on the surface 
of  the specimen and comparing it with the diam- 
eter calculated from 

d(2) = {h(p) [D(2) -- h(p)l  }1/2. (3) 

For the last unloading shown in Fig. 2, the 
measured d(2) was 1.12 + 0.02 m m  while the Value 
calculated from D(2) = 8.77 m m  and h(p) = 41.3 
/am was at 1.20 + 0.05 m m  just outside the estim- 
ated experimental error. 

The mean stress over the area of  contact be- 
tween the ball and specimen [5, 6] is 

a = (8/3X/(2)Tr){(1 --  v(1)Z)/E(1) 

+ (l --~v(2) 2 ) /E(2)}- '  t[(D(1)-I _ D(2)-X)h(e)] ,/2 
(4) 

The dimensionless term [(D(1)- 1 _ D(2)-  1 )h(e)] x/2 
is a measure o f  the elastic deformation and can be 
used as a definition of  the elastic strain, e(e), while 

for an initially flat specimen it is reasonable to 
define the plastic strain as [h(p)/D(1)] 1/2 so that 
the total strain e(t) is given by 

e ( t )  = [h(p)/D(1)] 1/2 

+ [(D(1) -1 --D(2)-l)h(e)] u2. (5) 

Substituting for D(2)-1 from Equation 2 into 4 
then 

a = 16{9n[(1 -- p(1)2)/E(1) 

+ (1 --  v(2) 2)/E(2)] 2 }-1 (h(e)2/F) 
(6) 

giving an expression for the mean stress which is 
independent of  either the ball or indentation diam- 
eter. Therefore if, on unloading, the force displace- 
ment  curve follows the F 2/3 relationship, then 
from the elastic displacement and the force it is 
possible to determine the mean stress under the 
ball. This mean stress has been calculated for our 
results for aluminium and is shown in Fig. 4. Up to 
a sresss of  4.7 x 10SPa and strain of  1.27%, the re- 
sults follow the elastic solution with D ( 1 ) =  ~.  
Above this strain the stress increases more slowly 
until from a strain of  5 to 11% the mean stress in- 
creases linearly with strain until at at total strain 
of  11.25%it is 11.7 -+ 0.2 x 108pa (115 k g m m - 2 ) .  

The unloading curve can also be used to estim- 
ate the Meyer stress, o(M), using 

o(M) = FfirD(Z)h(p) (7) 
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Figure 4 Stress-strain curve derived from the 
unloading results; �9 Mean stress under the ball 
(Equation 6), o Meyer stress (Equation 7). 

where h(p) is the plastic displacement which is pre- 
sent after the load has been removed and D(2) is 
calculated from Equation 2. The dependence of 
the Meyer stress on total strain is shown in Fig. 4 
where it can be seen to rise rapidly at the onset of 
plastic deformation before rising very slowly above 
a strain of 6% approximately following a straight 
line. 

The variation of e(e)/e(t) with total strain, pre- 
sented in Fig. 3, has two parts; the first with a 
rapid decrease at the start of plastic deformation 
and the second, a gradual linear decrease when 
most of the strain is plastic. The sum of e(e)/e(t) 

plus D(1)/D(2) varies from 0.87 at a strain of 2.1% 
to 1.00---0.02 for strains 4.6% and above, indi- 
cating that 

e(p)/e(t) ~ D(1)/D(2), (8) 

or by substituting Equation 5 for the strains 

h(e)/h(p) ~ (D(2)/D(1)){D(2)/D(1) -- 1}. (9) 

The experimental results for e(p)/e(t) and 
D(1)/D(2) are shown in Fig. 5 and can be seen to 
follow approximately the straight line given by 
Equation 8, especially for strains above 4%. The 
values of h(e)/h(p) given by Equation 9 for the 
extreme cases of  D(2)/D(1) = oo and 1 are reason- 
able in that in the first case, where there is no plas- 
tic deformation, h(e)/h(p) = oo and in the second, 
where the ball indentation combination is infi- 
nitely stiff because, of  the matching h(e)/h(p), is 
zero. 

A check was made of the rate-dependence of 
the force-displacement curves by operating the 
cross-head at 100 instead of 10/ammin -1. The 
force displacement curves for the complete test at 
100/Ira min -~ agreed within + 1% with those at 10 
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Figure 5 Variation of e(p)/e(t) with D(1)/D(2) determined 
from the unloading results. The dashed line is given by 
e(p)/e(t) = D(1)/D(2) (Equation 8). 

/lm min -1 so that we conclude that in the range of 
these tests on aluminium there is no observable 
rate -dependence. 

To enable our hardness stress-strain curve to 
be compared with other hardness techniques, 
Brinell and Vickers hardnesses were measured. For 
the Brinell test a load of 500 kg and a steel ball of 
10 mm was used giving a Brinell hardness of  100 + 
0 .5kgmm -2 while the Vickers diamond pyramid 
with a 2.5 kg load gave a Vickers hardness of 110 
kg mm -2 . These two hardness results are at strains 
well in the plastic region and can be compared 
with out results at e ( t ) = 9 %  with a =  107-+ 
2 k g m m  -2 and a(M) = 79 +-- 2 k g m m  -2 . 

4. Conclusions 
(1) The elastic loading of a spherical steel indenter 
into an aluminium test piece followed the classical 
Hertz equation. On unloading after plastic defor- 



mation, F 2/3 versus the displacement followed a 
straight line which confirmed the relevant Hertz 
solution. 

(2) From the elastic displacement on unloading 
it has been possible to determine the mean stress 
and the elastic strain under the ball, and the 
spherical diameter of  the indentation. Together 
with the total plastic displacement these results en- 
abled the Meyer stress and total strain to be calcu- 
lated and a stress-strain diagram for hardness to 
be drawn. 

(3) Experimentally it has been found that for 
aluminium the elastic and plastic strains are 
approximately related to the ball and indentation 
diameters by the equation 

e(p)/e(t) ~-- D(1 )/D(2). 
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